People
Professor Agonafer’s research interest is at the intersection of thermal-fluid sciences, interfacial transport phenomena, and renewable energy. He is focused on developing novel materials and systems for thermal management of power and microelectronic systems, as well as for thermochemical and electrochemical energy storage applications. His goal is to achieve transformational changes in technologies by tuning and controlling solid-liquid-vapor interactions at micro-/nano length scales. Specific areas of focus include the development of novel materials and micro-/nanostructures for phase change heat transfer, thermochemical energy storage, and interfacial transport phenomena. Applications of his work include cooling high-powered electronics, battery thermal management, and data center cooling, and improving the efficiency of HVAC systems.
Professor Agonafer earned his PhD at the University of Illinois Urbana-Champaign, where he was supported by the Alfred P. Sloan fellowship, Graduate Engineering Minority Fellowship, and NSF Center of Advanced Materials for Purification of Water with Systems (WaterCAMPWS). After his PhD, Damena joined Professor Ken Goodson’s Nanoheat lab as a Postdoctoral Scholar in the Mechanical Engineering Department at Stanford University. Prior to joining University of Maryland, Damena was an Assistant Professor in the Department of Mechanical Engineering at Washington University in Saint Louis. He is a recipient of the Google Research Award, Sloan Research Fellowship Award, Cisco Research Award, NSF CAREER Award, ASME Early Career award, and ASME K-16 Outstanding Early Faculty Career in Thermal Management Award. He was also one of 85 early-career engineers in the US selected to attend the 2021 National Academy of Engineering’s 26th annual US Frontiers of Engineering symposium.